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Abstract

This paper aims at developing an efficient finite element based computational procedure for the topology design of

heat conducting fields. To evaluate the temperature change in a specific position, due to varying the conducting material

distribution in other regions, a discrete temperature sensitivity is derived for an evolutionary topology optimization

method. In the topology optimization of the conducting fields, the thermal conductivity of an individual finite element

is considered as the design variable. By removing or degenerating the conductive material of the elements with the most

negative sensitivity, the temperature objective at the control point can be most efficiently reduced. Illustrative examples

are presented to demonstrate this proposed approach.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been recognized that computational design

optimization can yield substantial improvements in the

design of thermal systems such as a wing box [1], a ther-

mal diffuser [2] and cooling fins [3,4]. One of the most

frequently encountered design problems in thermal engi-

neering is to find a best possible geometrical shape or

size that can achieve specific heat objectives [5]. Conven-

tionally, the computational design is carried out by an

iterative procedure consisting of; finite (or boundary)
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element heat solver; sensitivity analysis and optimiza-

tion with mathematical programming. It is worth noting

that the existing literature has a strong focus on the

evaluation of various thermal-related sensitivities with

respect to size or shape design variables. This has been

pioneered by a number of researchers since the 1980s

[6]. Haftka adopted a finite element based discrete tech-

nique for computing the sensitivities of steady-state and

transient fields with respect to the changes in design

parameters [7]. Meric, constructed the shape design sen-

sitivities for numerical optimization of heat conducting

solids [8,9]. Dems [10] and Tortorelli et al. [11] derived

the sensitivities for both linear and non-linear thermal

systems by using the Lagrangian multiplier and adjoint

variable techniques. Park and Yoo developed a sensitiv-

ity-based algorithm for size and shape problems within
ed.
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Nomenclature

C global conductivity matrix

DC the change in global conductivity matrix due

to perturbation Dg
C new global conductance matrix in new system

DC e the change in the elemental conductance

matrix of the eth element

C e the elemental conductance matrix at element

e

D element set in design domain

E element set in entire heat field

I the volume distribution function of insula-

tor material

JO the objective function in terms of nodal

temperature

N element set in non-design domain

Q heat energy generated per unit volume

Q applied heat load vector

Qj fictitious load in thermal system

T global nodal temperature vector

Tj resulting temperature vector of fictitious

system

Tj the temperature at the jth node

TH the temperature at the heat sources

Te the temperature vector of the eth element

under real load Q
Te

j the temperature vector of the eth element

under fictitious load Qj

DT the change in global temperature vector

DTj the change in the jth temperature component

TC the temperature at boundary of the field

V0 the volume constraint of insulation material

V1, V2 the volumes of insulation and conduction

materials respectively

Greek symbols

âeT P 0 the translated sensitivity of element e

a0 a positive constant to translate all sensitivity

to positivity

aeT the temperature sensitivity of the eth element

g the design variable of each candidate element

j1 the insulator with a void or a very low

conductivity

j2 conductivity of conductive material

jx, jy,jz heat conductivities in x, y and z directions

(W/mmK)

lk Alteration ratio of the evolutionary

procedure

Dl Evolutionary Rate of the ESO procedure

s the convergence tolerance of the objective

function

Dtf fixed removal ratio of the material volume

Dtv varying removal ratio of the material

volume

X heat analysis domain
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a boundary element framework [2]. Saigal and Chandra

utilized the implicit direct differentiation of discrete

boundary integral equations for the sensitivity and opti-

mization of the heat diffusion problems [12]. Lee also

proposed a direct differentiation method for axi-sym-

metric thermal conducting solids by boundary element

method [13]. To facilitate general non-linear program-

ming algorithms, Hou and Sheen presented a numerical

technique to computing the second-order sensitivities

for heat conduction problems [3]. More recently, by

reducing the non-linear thermal equation to standard

Laplace problem, Sluzaec and Kleiber derived the

non-linear steady-state design sensitivities of diffuser�s
material in terms of the adjoint method [14]. Meric also

developed the sensitivities for general non-linear con-

ductive problems [15]. Dems and Rousselet derived the

continuum shape sensitivities for anisotropic materials

[16]. By using curvilinear grid generation and conjugate

gradient methods, Lan et al presented some design

problems of the shape profiles of the conductive med-

ium towards a uniform temperature distribution [5].

Gu et al presented a discrete form of sensitivity analysis

for linear and non-linear transient heat conduction
problems by means of a so-called precise time integra-

tion method [17].

In all the above-mentioned work, a common point

has been to compute the shape-based sensitivities and

then optimize the geometric boundaries by changing

shape parameters (e.g. nodal coordinates of interfaces

or boundaries). Although these shape or size based de-

signs are of great theoretical significance, there exist sev-

eral limitations in practical applications. Firstly, a

complex geometry needs being represented in an efficient

manner to accommodate an accurate sensitivity analysis

[5]. In other words, the sensitivity analysis usually relies

on the scheme of boundary or interface representation.

Secondly, a sophisticated re-meshing process is often re-

quired when the changing mesh suffers serious distortion

after a number of iterations [18]. Finally, the designs are

somewhat restricted by the initial guess of the shape and

there is less possibility to seek an innovative optimal

topology.

In the past two decades, substantial efforts have been

devoted to the development of some efficient and robust

topology optimization procedures for a full range of

problems in continuum and structural mechanics [19–
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24]. It has been noticed that the optimum topology de-

signs can provide a more sizeable improvement in struc-

tural performance than optimal size and shape designs.

Such topology optimization is especially beneficial at

the conceptual design phase of a product [24]. To mi-

grate the well-established topology algorithms from elas-

tic mechanics problems to thermal problems, Li et al

presented a unified non-gradient procedure to both

shape and topology optimizations for heat conduction

problems, in which a uniform efficiency of material

usage in terms of local heat flux was achieved [25]. Such

a flux-based topology optimization procedure was later

extended to other physical situations [26], where the de-

sign optimizations covered a range of practical examples

in torsional, conductive, electrical and magnetic fields

that are governed by the quasi-harmonic equation.

To enable more specific design objectives, one of the

crucial issues associated with topology optimization is to

evaluate the topological sensitivities. Such a problem has

attracted a certain attention recently. Motivating from

the typical inverse problem of identifying a small inclu-

sion, Sokolowski and Zochowski presented topological

derivatives for a general 3D Laplace equation [27]. They

formulated the flux-type objective functions and theoret-

ically claimed some potential in the designs of diffusion

or heat transfer problems. Guillaume and Idris derived

topological sensitivities of Dirichilet problem by using

an asymptotic expansion technique [28]. Recently, the

authors also derived a discrete temperature sensitivity

with respect to the presence and absence of a candidate

element for the temperature control problem and some

innovative topologies were presented in the heat conduc-

tive fields [29]. Turteltaub employed solid isotropic

material with penalization (SIMP) method for the bi-

material redistributions in a transient heat conduction

problem [30]. The temperature field at a given time step

is sought as close as possible to a target distribution in a

least-square sense. Based on the well-established shape

sensitivity concepts, Novotny et al. developed a topolog-

ical derivative for ordinary partial differential equations,

in which the heat transfer with both Dirichlet (tempera-

ture) and Neuman (heat flux) boundaries are considered

in the newly created holes. In their work, some energy-

type cost functions were set for the design objectives

and material removal is carried out in the design process

[31]. Starting from some seed holes, Barbarosie pre-

sented a reshape process that produced some interesting

periodic inclusions of non-conductive materials or voids

to yield a certain heat conductive properties [18].

Relatively speaking, however, the methodology and

applications of the topological designs in thermal con-

ducting media have been less addressed comparing

with the structural mechanics problems in spite its po-

tential significances. On the basis of previous relevant

work by the authors [32–34], this paper aims at extend-

ing the evolutionary structural optimization (ESO)
method [23,35,36] to the material topology designs of

the thermal conduction problems. In this study, the

ESO method is employed to minimize the objective

temperature at a specific node by both topology (con-

ducting solid and void) and bi-material (conductor and

insulator) design models. To estimate the effect of con-

ductive material�s removal or degeneration on the con-

trol temperature, a discrete temperature sensitivity is

derived for steady state heat conducting fields. To

demonstrate the capabilities of the method presented

herein, several numerical examples are also presented

in this paper.
2. Sensitivity analysis for steady-state heat fields

The governing equation for general steady state heat

conduction problems is well known as,

o

ox
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ox

� �
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� �
þ Q ¼ 0; ð1Þ

where jx, jy and jz denote heat conductivities, Q the

heat energy generated per unit volume. Eq. (1) can be

approximated by means of a finite element formulation

as [37]

CT �Q ¼ 0; ð2Þ

where C represents the global conductivity matrix, T the

global nodal temperature vector and Q the applied heat

load vector.

In a topological optimization, the materials of con-

ductive field are systematically redistributed among

those candidate elements in design domain (represented

by D) so that a certain form of objective function can be

sought. The present study concentrates on temperature

reduction by optimizing the material configuration.

From the perspectives of engineering applications, it is

usually expected that the final designs can be one of

the following two cases with: (1) some voids or holes cre-

ated in the conductive fields and (2) some insulators

embedded into the conductive materials. The appropri-

ate holes or insulators will play a role on redistributing

the conductive fields thereby achieving the certain value

for the prescribed design objective. It is desirable that

the materials used in the final designs should be either

the conductor with a high conductivity of j2 or the insu-
lator with either a void (j1 = 0) or a very low conductiv-

ity of j1 (j1 � j2).
Mathematically, the topology optimization problems

for the temperature control can be stated as follows,

JO ¼ T jðgÞ;
s:t: V 0 �

R
X IðgðxÞÞdXP 0;

�
ð3Þ

where JO = Tj(g) denotes the objective function in terms

of temperature at controlled node j, X the domain of
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Fig. 1. Finite element model for sensitivity analysis.
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heat analysis, I the volume distribution function of insu-

lator material and V0 the volume constraint for insula-

tor materials. g 2 [0,1] represents the design variable of

each candidate element e 2 D and the corresponding

conductivity of material can be expressed in a linear

fashion as,

jðgÞ ¼ ð1� gÞj1 þ gj2: ð4Þ

For the full conductive materials, g = 1 and for the void

or full insulation materials, g = 0.

It is assumed that the initial design domain is fully

occupied by conductive materials. It is expected that,

by removing or degenerating some conductive elements,

newly created cavities or material distribution can have

the objective temperature reduced. To do so, the effect

of the element removal or material deterioration on

the objective temperature JO needs to be assessed. This

can be done by either additional exact analyses or

employing some approximate procedure to reduce the

number of costly exact analyses [20]. By comparing the

relative effects, the most suitable elements to be altered

can be identified [38] and the removal or degeneration

of such conductive elements will result in a most efficient

reduction in the objective temperature.

The alteration (removal or degeneration) of a con-

ductive element (by a perturbation �Dg in the design

variable) will lead the global conductance matrix of sys-

tem (2) to changing by

DC ¼ CðgÞ � Cnewðg� DgÞ; ð5Þ

where Cnew stands for the new conductance matrix of

the resulting field after altering the eth element and g

the vector of design variables in the old system. For sim-

plicity, assume that the variation of the element has no

effect on the heat load vector Q, i.e. DQ = 0. The equilib-

rium condition for the new system of conducting field is

given by

ðC � DCÞðT þ DTÞ ¼ Q: ð6Þ

Subtracting Eq. (2) from (6) and ignoring the higher

order term, one can compute the change of the temper-

ature vector as,

DT ¼ C�1DCT: ð7Þ

To identify the change in a specific jth temperature

component Tj, a fictitious load Qj, in which the jth com-

ponent is equal to unity and all the others are equal to

zero, is introduced. Multiplying Eq. (7) by Qj, the

change DTj in the specific temperature component due

to altering the eth element, as shown in Fig. 1, is deter-

mined by

DT j ¼ QT
j DT ¼ QT

j C
�1DCT ¼ TT

j DCT; ð8Þ

where TT
j denotes the solution of the fictitious system,

CTj �Q ¼ 0: ð9Þ
j
In fact, the temperature change DTj can be readily

calculated at one element level as

DT j ¼ TeT

j DC eTe; ð10Þ

where DCe denotes the change in the elemental conduc-

tance matrix of the eth element due to perturbation Dg
in its the design variable, Te

j and Te denote the temper-

ature vectors of the eth element under the fictitious load

Qj and the real load Q respectively. Represent the ele-

ment set in whole conductive field by E(D ˝ E), for

e 2 E, the value

aeT ¼ TeT

j DC eTe ð11Þ

is defined as the temperature sensitivity of the eth ele-

ment, which is used to estimate the temperature change

at the jth degree of freedom due to the alteration of the

conductivity of element e.

It should be noted that aeT can be either positive or

negative, which implies that Tj may be changed in an

opposite direction. In other words, the sensitivity num-

bers divide the design domain D into two types of re-

gions, respectively positive D+ or negative D�. It is

obvious that, to remove or degenerate the conductive

materials from the negative sensitivity elements e 2 D�

will result in the controlled temperature reduced

steadily.
3. Evolutionary procedure

In this paper, two evolutionary procedures are pre-

sented. One is to set the initial design variables at the

maximum possible value g = 1 or j(g = 1) = j2, then

gradually fully remove the material from those conduc-

tive elements with the most negative sensitivities. In

other words, the design variables are altered to g = 0

or j(g = 0) = j1 = 0 as in the typical ESO procedure

[23,25]. The other is also set the initial design variable

at g = 1 (i.e. j(g = 1) = j2) for each candidate element,

then progressively downgrade the conductive material

to the insulation value, j(g) = j1 � j2, for those most
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negatively sensitive elements. As a result of these two

procedures, some holes or insulators are generated in

the conductive domain, which will play a most efficient

role on thermal shielding if the effects of convection

and radiation are not considered. These two different ap-

proaches are described separately in the following

sections.

3.1. Element removal

In the typical ESO topological design, elements are

removed from the finite element model. Subsequently,

the conductance matrix of whole system changes, in an

element level, by

DC e ¼ C e; ð12Þ

where Ce denotes the elemental conductance matrix. For

such a situation, the temperature sensitivity in Eq. (11)

can be therefore expressed as

aeT ¼ TeT

j C eTe; ð13Þ

which indicates the temperature variation at node j due

to the removal of element e from the conductive field.

3.2. Degeneration of conductive materials

In an evolutionary material design, the conductive

material can be degenerated in such a way from a higher

conductivity j(g) to a lower conductivity j(g � Dg) that
the target temperature is gradually reduced. This has

been accomplished by using a discrete descending step-

wise design variables g 2 [g1,g2,. . .,gr] (here g1 = 1>g2>
� � �>gr = 0) in previous development of the morphing

ESO [23]. However, the method may lead to some

semi-conductor materials remained in the final design

domain though they do not usually dominate the design.

Obviously, such a result could become less realistic in

practical engineering applications. For this reason, de-

sign variable g = 1 or 0 is set in this study, in which

j(g = 1) = j2 is implicitly given for the high conductive

material (conductor) and j(g = 0) = j1 for the low con-

ductive material (insulator).

As a result of degeneration of the conductive materi-

als, the change in elemental conductance matrix is com-

puted as,

DC e ¼ C eðgÞ � C eðg� DgÞ: ð14Þ
Fig. 2. Optimal design of a heat conductive field: (a) finite

element modeling and (b) optimum topology.
3.3. Evolutionary procedure

After subdividing the conductive field with a dense fi-

nite element mesh, the evolutionary procedure starts

from a status with fully populated conductive elements

(j(g = 1) = j2). In the typical ESO procedure, the rela-

tive magnitudes of element�s sensitivities determine the

sequence of element�s deletion or degeneration [23,35].
It would make the evolutionary procedure more control-

lable if all the temperature sensitivities of elements are

translated to positive values. This can be accomplished

by simply adding a certain positive constant number

a0, which is large enough so as to shift all sensitivity

numbers greater than zero, i.e.

âeT ¼ aeT þ a0 P 0: ð15Þ

It is clear that removing or degenerating those con-

ductive elements which have the most negative value

of aeT will result in the most significant contribution to

the reduction of the target temperature. The evolution-

ary criterion for such a purpose is determined by com-

paring the temperature sensitivity of each element with

the highest value âmax
T . That is to say that the element

e is removed or degenerated from D (by assigning

g = 0), if its sensitivity satisfies both

aeT < 0; ð16Þ

and
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Fig. 5. The evolutionary history of objective temperature with

two heat sources.
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controlled point.
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âeT 6 lðkÞ � âmax
T ; ð17Þ

where l(k) is termed as Alteration ratio, which is adopted

to determine a threshold for the negativity of the tem-

perature sensitivity. The process of the element alter-

ation is repeated using the same value of l(k) until a

Steady State is reached, which means that there are no

more elements being deleted or degenerated at the cur-

rent iteration. At this stage an Evolutionary Rate (Dl)
is introduced so that

lðkþ1Þ ¼ lðkÞ þ Dlðkþ1Þ: ð18Þ

For simplicity, the evolutionary rate Dl is usually set

as a constant throughout the evolving process, though a

variable rate can be used [36]. In the following design

examples, both the initial values of the alteration ratio

l(k = 0) and Dl are set to 2% to ensure a smooth change

between two steady states [23]. With the increased alter-
Fig. 4. Initial design domain and temperatu
ation ratio (l(k + 1)) the cycle of finite element analysis

and element alteration takes place again until a new

steady state is reached.

In order to end up the evolving procedure, two termi-

nation criteria are employed in this study. Firstly, when

the evolving process has progressed to a certain degree,

it is possible that all elemental sensitivities over the con-

ductive design domain "e 2 D(k) becomes non-negativ-

ity, i.e.

aeT P 0 ð19Þ

or D�(k) = ;, which implies that there is no further room

to remove or degenerate the conductive materials. Hence

the evolving process should be terminated at this stage.

The non-negativity condition is also viewed as an opti-

mality criterion by several other researchers [39,40].

Secondly, as more and more elements with highly

negative sensitivities are removed or degenerated, the
re distribution with two heat sources.
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effect of element alteration on the target temperature be-

comes less and less significant. In this study, a tolerance

s (e.g. 10�6) [23,32] is prescribed for the convergence

check on the objective function (JO). If the relative

change in the objective temperatures in two successive

iterations is less than the given tolerance s, i.e.

J ðkþ1Þ
O � J ðkÞ

O

J ðkÞ
O

�����
�����6 s ð20Þ

then it is deemed that a convergent state for the target

temperature has been reached and the evolutionary pro-

cedure should be terminated. To continue the iterations
Fig. 6. Initial design domain and temperature distribution with two

(b) optimal topology of insulators (k = 7) and (c) temperature contou
beyond such a convergent state will yield little or no

improvement in the design objective.

The evolutionary iteration procedure for minimizing

the nodal temperature is re-organized systematically as

follows:

Step 1:

Discretize the heat conduction field using a dense FE

mesh (E), in which the element sets in the design and

non-design domains are denoted by D and N respec-

tively,D\N = ; andD[ N = E. Assign the initial design

variable of elements in the design domain to g = 1, and

define ESO driving parameters l(k = 0) and Dl.
heat sources: (a) intermediate topology of insulators (k = 3),

r with the optimal design of insulators.



Fig. 7. Initial design domain and temperature contour with

four heat sources.
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Step 2:

Perform a FEA for the real (2) and fictitious thermal

systems (9) respectively.

Step 3:

Compute temperature sensitivity aeT for all e 2 E by

using Eq. (11).

Step 4:

Remove or degenerate a number of elements e 2 D�(k)

which satisfy both Eqs. (16) and (17) and then set

e 2 N.

Step 5:

If a steady state is reached, increase l(k) by Dl, as

Eq. (18), and set k = k + 1, repeats Step 4; Other-

wise, repeat Steps 2–4 until Eqs. (19) or (20) is satis-

fied.

As pointed out by Garreau et al., Céa et al. and Guil-

laume and Idris [28,39,40], in essence, the evolutionary

procedure can be seen as a steepest descent method

where the descent direction is determined by the temper-

ature sensitivity aeT and the step length is controlled in

terms of the evolutionary rate Dl. To maintain a smooth

change between two consecutive iterations, in general,

the evolutionary rate is prescribed at a small percentage.

A more detail can be found from the monograph by Xie

and Steven [23]. As an alternative, the step length can

also be controlled by either a fixed removal ratio Dtf of
volume (the ratio of current removed volume to the ini-

tial volume) [32,38] or a varying removal ratio Dtv of vol-
ume (the ratio of removed volume at the current step to

volume of the previous step) [28,31,39,40]. In general,

the fixed removal ratio is set at a lower percentage

(say Dtf = 1–3% as of [23]) and the varying removal ratio

can be set to a higher percentage (say Dtv = 5–10% as of

[28,40]). In numerical computation, the value of the evo-

lutionary rate Dl or removal ratio Dt can be appropri-

ately adjusted by monitoring the change in the

objective function or geometrical connectivity being

generated.
Fig. 8. Traditional design of insulation (with a target temper-

ature at JO = 1.128 �C).
4. Illustrative examples

The following examples are used to demonstrate the

capabilities of the proposed evolutionary topology opti-

mization method for solving temperature control prob-

lems. It is assumed that all examples are subject to

two-dimensional steady heat conduction, where thermal

convection and radiation are not considered (even for

some newly created free boundaries). For the simplicity

of finite element modeling, the examples are meshed

using 2D four node quadrilateral elements with a unit

thickness.

The first example has those negatively sensitive ele-

ments progressively removed from the design domain.

As a consequence of this, an optimal topology is gener-
ated in the conductive field, where the target tempera-

ture at the controlled point is minimized. The second

example aims at determining the optimum topological

distributions of insulation materials. In the design pro-

cesses, the initial conductive material is gradually con-

verted to the insulators so as to reduce the objective

temperature at the specified position(s).

4.1. Topological design of conductive field

A heat conducting field with the dimension of 30

mm · 30 mm is meshed in 30 · 30 four node square ele-

ments. The boundary temperature along the top (dc) and

the left edges (da) is maintained at TC = 0 �C (273 �K),

while the temperature at the lower right corner (point

b) is set at Tb = 1 �C (274 �K), as illustrated in Fig.

2(a). There is no heat flux assumed along all these four

boundaries (i.e. edges ab, bc, cd and da).
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In this example, the minimization of the temperature

at central point O of the square field is sought. Those

four elements that directly connect to this node (O) are

considered as the non-design domain N (as shaded in

Fig. 2(a)). In the design process, an evolutionary rate

of Dl = 2% is set. As more and more elements with

the most negative sensitivities are removed, the temper-

ature JO at the controlled point O is progressively ap-

proached to zero as plotted in Fig. 3.

Corresponding to the final stage of temperature min-

imization (at steady state 7), Fig. 2(b) shows the opti-

mized topological design. It is interesting to note that
Fig. 9. Initial design domain and temperature distribution with two h

optimal topology of insulators (k = 8) and (c) temperature contou

temperature of JO = 0.292 �C).
a topological pattern with 45� corner connection of the

elements can be observed in the farthest end to the lower

right corner node that has the highest temperature in the

field. This simply forms a longest conductive path from

the high temperature point to the controlled point.

4.2. Designs of thermal insulation topologies

The second example is employed to show some topo-

logical design problems of heat insulation materials in

conductive fields. A region of 30 mm · 30 mm is taken

into account here, in which the temperature in those
eat sources: (a) intermediate topology of insulators (k = 2), (b)

r with the optimal design of insulators (with the objective
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four outer boundaries is kept at 0 �C (273 �K). The con-

ducting fields to be designed consist of two materials,

one for conductor with a thermal conductivity of

j2 = 0.045 W/mmK and another for insulation with a

conductivity of j1 = 0.001 W/mmK (i.e. j1 � 2%j2).
To observe the variation of topologies of different design

cases, the two and four heat sources (with a higher nodal

temperature at each heat source H) are considered

respectively in the example.

Fig. 4 depicts the temperature distribution for the ini-

tial design, where two heat sources (H1 and H2) with a

temperature at TH1 = TH2 = 10 �C (283 �K) are set. Ini-

tially, the design domain D is made of pure conductive

material (with the conductivity of j2 = 0.045 W/

mmK). It can be seen that, from the temperature con-

tour illustrated in Fig. 4, the objective temperature then

has a level at JO = 1.22 �C (274.22 �K). In the evolution-
Fig. 11. The mesh effect on the topological designs of insulators: (a) Mesh 40 · 40, (b) Mesh 50 · 50, (c) Mesh 60 · 60 and (d) Mesh

70 · 70.
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ary optimization process, as some negatively sensitive

conduction material is progressively converted to insula-

tor, the objective function is gradually reduced towards

a much lower level at JO = 0.0185 �C (273.0185 �K), as

plotted in Fig. 5. This represents a 98.5% reduction in

the objective temperature.

An intermediate and the final topologies of the insu-

lation material are shown in Figs. 6(a) and (b), and the

optimized temperature contour is depicted in Fig. 6(c). It

is clearly seen that the optimal topology of insulator

material efficiently isolates the controlled point O from

the heat conduction. Obviously, the topology design of

the insulator forms the best possible barrier to prevent

heat from high temperature zones to the targeted tem-

perature control point.

Fig. 7 shows the initial temperature contour with

four heat sources at a higher temperature of

TH1 = TH2 = TH3 = TH4 = 10 �C (283 �K) and the zero-

temperature at the boundaries (ab, bc, cd and da). When

there are no insulators distributed initially, the objective

temperature at the center of the analyzed region is pre-

sented as JO = 1.21 �C (274.21 �K), as in Fig. 7. For such

a surrounding multi-heating case, one can intuitively

think of a more conventional design with the circular

shaped insulator, as illustrated in Fig. 8, in which the

controlled point is completely isolated by insulation

material from the surrounding high temperature zones.

To make a comparison possible, a volume constraint

of V0 = V1 = 340 mm3 (insulator) or V2 = 900 mm3 (con-

ductor), i.e. V1/V2 = 60%, is prescribed to allocate the

circularly shaped insulator and conducting materials.

As a consequence of such a circular-shielded design,

the objective function can be reduced to a moderate level

of JO = 1.128 �C (274.128 �K) as in Fig. 8.

When the evolutionary procedure is applied, the insu-

lation material is optimally distributed over the design

domain D as more and more negatively sensitive con-

ducting elements are converted to insulation ones, as

presented in Fig. 9(a) and (b). It is interesting to note

that, although there still exist some conductive channels

from the high temperature zones to the controlled point,

the target temperature has been decreased to JO = 0.292

�C (273.292 �K), a 76% reduction from the non-insula-

tion design and a 74% reduction from the conventionally

circular insulator design. Shown in Fig. 10 is the evolu-

tionary history plot of the objective temperature.

The temperature contour of the optimum topology is

depicted in Fig. 9(c). Compared this with those in the

non-insulation (Fig. 7) and the circular designs (Fig.

8), it can be found that the optimal topology provides

a much more uniform temperature descents (or negative

gradients) inside the insulators. This indicates that the

insulation material in optimum design plays a more effi-

cient role on heat shielding.

To clarify the effect of finite element mesh on the

resulting topologies, Figs. 11(a)–(d) gives a comparison
in several different mesh densities of 40 · 40, 50 · 50,

60 · 60 and 70 · 70. From this example, it seems that

the mesh densities do not lead to noticeable changes in

the topologies, nor does there exist significant checker-

board pattern compared to elasto-static problems.
5. Concluding remarks

This paper focuses on the topology design methods

and applications for thermally conductive materials.

Unlike the shape-driven design methodology developed

in the existing literature, the present evolutionary proce-

dure does not require any initial hole or seed insulator

for seeking a new material topology. In this study, the

design variable is constructed in terms of an element�s
thermal conductivity.

As distinguished from previous studies in non-gradi-

ent based topology algorithm presented by the authors,

this piece of work derives a discrete sensitivity formula-

tion with respect to element�s absence or material degen-

eration in a heat finite element framework. According to

the negativity or positivity of the temperature sensitivity,

a conducting field is divided into two complementary re-

gions. Removing or degenerating element�s materials

from the most negative sensitive region will result in a

most efficient temperature reduction at a specific target-

ing node. More importantly, the temperature sensitivity

provides a great potential to some more extensive design

objectives in thermal engineering. From the experience

gathered in [25,26], it can be claimed that the temper-

ature sensitivity-driven evolutionary procedure offers

a new capability to the topological design of other gen-

eral field problems governed by the quasi-harmonic

equation.

To seek an optimum, the ESO method is employed in

this paper. The ESO method is implemented from a

more intuitive concept that by progressively removing

or degenerating conductive material at the deepest de-

cent direction, the residual topology evolves towards a

status with a higher thermal performance. It can been

seen that from this article the extension of the well-

established ESO method to heat conducting problem is

quite straightforward and does not increase any compu-

tational complexity.

It is worth pointing out that however, the tempera-

ture sensitivity does not take into account the effects of

perturbation of design variables on the change of the ap-

plied thermal loading, i.e. DQ is neglected in Eq. (6).

This means that the topology described by voids or holes

(j1 = 0) only reflects an optimal design for the pure con-

ducting performance. In practice, one should take care

of the formation of new boundaries, where the convec-

tion and even radiation need being carefully considered.

Obviously, a more specific study is needed to address

this issue in future [30].
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